Papers
Topics
Authors
Recent
2000 character limit reached

Confidence Region of Singular Subspaces for Low-rank Matrix Regression (1805.09871v3)

Published 24 May 2018 in math.ST, cs.IT, math.IT, stat.ME, stat.ML, and stat.TH

Abstract: Low-rank matrix regression refers to the instances of recovering a low-rank matrix based on specially designed measurements and the corresponding noisy outcomes. In the last decade, numerous statistical methodologies have been developed for efficiently recovering the unknown low-rank matrices. However, in some applications, the unknown singular subspace is scientifically more important than the low-rank matrix itself. In this article, we revisit the low-rank matrix regression model and introduce a two-step procedure to construct confidence regions of the singular subspace. The procedure involves the de-biasing for the typical low-rank estimators after which we calculate the empirical singular vectors. We investigate the distribution of the joint projection distance between the empirical singular subspace and the unknown true singular subspace. We specifically prove the asymptotical normality of the joint projection distance with data-dependent centering and normalization when $r{3/2}(m_1+m_2){3/2}=o(n/\log n)$ where $m_1, m_2$ denote the matrix row and column sizes, $r$ is the rank and $n$ is the number of independent random measurements. Consequently, we propose data-dependent confidence regions of the true singular subspace which attains any pre-determined confidence level asymptotically. In addition, non-asymptotical convergence rates are also established. Numerical results are presented to demonstrate the merits of our methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.