Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A derived isometry theorem for constructible sheaves on $\mathbb{R}$ (1805.09694v4)

Published 24 May 2018 in math.AT and cs.CG

Abstract: Persistent homology has been recently studied with the tools of sheaf theory in the derived setting by Kashiwara and Schapira, after J. Curry has made the first link between persistent homology and sheaves. We prove the isometry theorem in this derived setting, thus expressing the convolution distance of sheaves as a matching distance between combinatorial objects associated to them that we call graded barcodes. This allows to consider sheaf-theoretical constructions as combinatorial, stable topological descriptors of data, and generalizes the situation of persistence with one parameter. To achieve so, we explicitly compute all morphisms in $Db_{\mathbb{R} c}(\textbf{k}\mathbb{R})$, which enables us to compute distances between indecomposable objects. Then we adapt Bjerkevik's stability proof to this derived setting. As a byproduct of our isometry theorem, we prove that the convolution distance is closed, give a precise description of connected components of $Db{\mathbb{R} c}(\textbf{k}_\mathbb{R})$and provide some explicit examples of computation of the convolution distance.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.