Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deploy Large-Scale Deep Neural Networks in Resource Constrained IoT Devices with Local Quantization Region (1805.09473v1)

Published 24 May 2018 in cs.LG and stat.ML

Abstract: Implementing large-scale deep neural networks with high computational complexity on low-cost IoT devices may inevitably be constrained by limited computation resource, making the devices hard to respond in real-time. This disjunction makes the state-of-art deep learning algorithms, i.e. CNN (Convolutional Neural Networks), incompatible with IoT world. We present a low-bit (range from 8-bit to 1-bit) scheme with our local quantization region algorithm. We use models in Caffe model zoo as our example tasks to evaluate the effect of our low precision data representation scheme. With the available of local quantization region, we find implementations on top of those schemes could greatly retain the model accuracy, besides the reduction of computational complexity. For example, our 8-bit scheme has no drops on top-1 and top-5 accuracy with 2x speedup on Intel Edison IoT platform. Implementations based on our 4-bit, 2-bit or 1-bit scheme are also applicable to IoT devices with advances of low computational complexity. For example, the drop on our task is only 0.7% when using 2-bit scheme, a scheme which could largely save transistors. Making low-bit scheme usable here opens a new door for further optimization on commodity IoT controller, i.e. extra speed-up could be achieved by replacing multiply-accumulate operations with the proposed table look-up operations. The whole study offers a new approach to relief the challenge of bring advanced deep learning algorithm to resource constrained low-cost IoT device.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.