Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Taming Convergence for Asynchronous Stochastic Gradient Descent with Unbounded Delay in Non-Convex Learning (1805.09470v2)

Published 24 May 2018 in cs.LG, cs.DC, and stat.ML

Abstract: Understanding the convergence performance of asynchronous stochastic gradient descent method (Async-SGD) has received increasing attention in recent years due to their foundational role in machine learning. To date, however, most of the existing works are restricted to either bounded gradient delays or convex settings. In this paper, we focus on Async-SGD and its variant Async-SGDI (which uses increasing batch size) for non-convex optimization problems with unbounded gradient delays. We prove $o(1/\sqrt{k})$ convergence rate for Async-SGD and $o(1/k)$ for Async-SGDI. Also, a unifying sufficient condition for Async-SGD's convergence is established, which includes two major gradient delay models in the literature as special cases and yields a new delay model not considered thus far.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.