Papers
Topics
Authors
Recent
2000 character limit reached

Use of symmetric kernels for convolutional neural networks

Published 23 May 2018 in cs.CV | (1805.09421v1)

Abstract: At this work we introduce horizontally symmetric convolutional kernels for CNNs which make the network output invariant to horizontal flips of the image. We also study other types of symmetric kernels which lead to vertical flip invariance, and approximate rotational invariance. We show that usage of such kernels acts as regularizer, and improves generalization of the convolutional neural networks at the cost of more complicated training process.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.