Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Use of symmetric kernels for convolutional neural networks (1805.09421v1)

Published 23 May 2018 in cs.CV

Abstract: At this work we introduce horizontally symmetric convolutional kernels for CNNs which make the network output invariant to horizontal flips of the image. We also study other types of symmetric kernels which lead to vertical flip invariance, and approximate rotational invariance. We show that usage of such kernels acts as regularizer, and improves generalization of the convolutional neural networks at the cost of more complicated training process.

Citations (5)

Summary

We haven't generated a summary for this paper yet.