Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Non-Gaussian Hyperplane Tessellations and Robust One-Bit Compressed Sensing (1805.09409v2)

Published 23 May 2018 in cs.IT, math.IT, and math.PR

Abstract: We show that a tessellation generated by a small number of random affine hyperplanes can be used to approximate Euclidean distances between any two points in an arbitrary bounded set $T$, where the random hyperplanes are generated by subgaussian or heavy-tailed normal vectors and uniformly distributed shifts. We derive quantitative bounds on the number of hyperplanes needed for constructing such tessellations in terms of natural metric complexity measures of $T$ and the desired approximation error. Our work extends significantly prior results in this direction, which were restricted to Gaussian hyperplane tessellations of subsets of the Euclidean unit sphere. As an application, we obtain new reconstruction results in memoryless one-bit compressed sensing with non-Gaussian measurement matrices. We show that by quantizing at uniformly distributed thresholds, it is possible to accurately reconstruct low-complexity signals from a small number of one-bit quantized measurements, even if the measurement vectors are drawn from a heavy-tailed distribution. Our reconstruction results are uniform in nature and robust in the presence of pre-quantization noise on the analog measurements as well as adversarial bit corruptions in the quantization process. Moreover we show that if the measurement matrix is subgaussian then accurate recovery can be achieved via a convex program.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.