Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semi-Supervised Learning with GANs: Revisiting Manifold Regularization (1805.08957v1)

Published 23 May 2018 in cs.LG and stat.ML

Abstract: GANS are powerful generative models that are able to model the manifold of natural images. We leverage this property to perform manifold regularization by approximating the Laplacian norm using a Monte Carlo approximation that is easily computed with the GAN. When incorporated into the feature-matching GAN of Improved GAN, we achieve state-of-the-art results for GAN-based semi-supervised learning on the CIFAR-10 dataset, with a method that is significantly easier to implement than competing methods.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.