Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scalable Coordinated Exploration in Concurrent Reinforcement Learning (1805.08948v2)

Published 23 May 2018 in cs.LG, cs.AI, and stat.ML

Abstract: We consider a team of reinforcement learning agents that concurrently operate in a common environment, and we develop an approach to efficient coordinated exploration that is suitable for problems of practical scale. Our approach builds on seed sampling (Dimakopoulou and Van Roy, 2018) and randomized value function learning (Osband et al., 2016). We demonstrate that, for simple tabular contexts, the approach is competitive with previously proposed tabular model learning methods (Dimakopoulou and Van Roy, 2018). With a higher-dimensional problem and a neural network value function representation, the approach learns quickly with far fewer agents than alternative exploration schemes.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.