Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Tropical Approach to Neural Networks with Piecewise Linear Activations (1805.08749v2)

Published 22 May 2018 in stat.ML and cs.LG

Abstract: We present a new, unifying approach following some recent developments on the complexity of neural networks with piecewise linear activations. We treat neural network layers with piecewise linear activations as tropical polynomials, which generalize polynomials in the so-called $(\max, +)$ or tropical algebra, with possibly real-valued exponents. Motivated by the discussion in (arXiv:1402.1869), this approach enables us to refine their upper bounds on linear regions of layers with ReLU or leaky ReLU activations to $\min\left{ 2m, \sum_{j=0}n \binom{m}{j} \right}$, where $n, m$ are the number of inputs and outputs, respectively. Additionally, we recover their upper bounds on maxout layers. Our work follows a novel path, exclusively under the lens of tropical geometry, which is independent of the improvements reported in (arXiv:1611.01491, arXiv:1711.02114). Finally, we present a geometric approach for effective counting of linear regions using random sampling in order to avoid the computational overhead of exact counting approaches

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.