Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Deep Learning Inference on Embedded Devices: Fixed-Point vs Posit (1805.08624v1)

Published 22 May 2018 in cs.CV

Abstract: Performing the inference step of deep learning in resource constrained environments, such as embedded devices, is challenging. Success requires optimization at both software and hardware levels. Low precision arithmetic and specifically low precision fixed-point number systems have become the standard for performing deep learning inference. However, representing non-uniform data and distributed parameters (e.g. weights) by using uniformly distributed fixed-point values is still a major drawback when using this number system. Recently, the posit number system was proposed, which represents numbers in a non-uniform manner. Therefore, in this paper we are motivated to explore using the posit number system to represent the weights of Deep Convolutional Neural Networks. However, we do not apply any quantization techniques and hence the network weights do not require re-training. The results of this exploration show that using the posit number system outperformed the fixed point number system in terms of accuracy and memory utilization.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube