Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adversarial Learning of Raw Speech Features for Domain Invariant Speech Recognition (1805.08615v1)

Published 21 May 2018 in eess.AS and cs.SD

Abstract: Recent advances in neural network based acoustic modelling have shown significant improvements in automatic speech recognition (ASR) performance. In order for acoustic models to be able to handle large acoustic variability, large amounts of labeled data is necessary, which are often expensive to obtain. This paper explores the application of adversarial training to learn features from raw speech that are invariant to acoustic variability. This acoustic variability is referred to as a domain shift in this paper. The experimental study presented in this paper leverages the architecture of Domain Adversarial Neural Networks (DANNs) [1] which uses data from two different domains. The DANN is a Y-shaped network that consists of a multi-layer CNN feature extractor module that is common to a label (senone) classifier and a so-called domain classifier. The utility of DANNs is evaluated on multiple datasets with domain shifts caused due to differences in gender and speaker accents. Promising empirical results indicate the strength of adversarial training for unsupervised domain adaptation in ASR, thereby emphasizing the ability of DANNs to learn domain invariant features from raw speech.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.