Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Confounding-Robust Policy Improvement (1805.08593v3)

Published 22 May 2018 in cs.LG and stat.ML

Abstract: We study the problem of learning personalized decision policies from observational data while accounting for possible unobserved confounding. Previous approaches, which assume unconfoundedness, i.e., that no unobserved confounders affect both the treatment assignment as well as outcome, can lead to policies that introduce harm rather than benefit when some unobserved confounding is present, as is generally the case with observational data. Instead, since policy value and regret may not be point-identifiable, we study a method that minimizes the worst-case estimated regret of a candidate policy against a baseline policy over an uncertainty set for propensity weights that controls the extent of unobserved confounding. We prove generalization guarantees that ensure our policy will be safe when applied in practice and will in fact obtain the best-possible uniform control on the range of all possible population regrets that agree with the possible extent of confounding. We develop efficient algorithmic solutions to compute this confounding-robust policy. Finally, we assess and compare our methods on synthetic and semi-synthetic data. In particular, we consider a case study on personalizing hormone replacement therapy based on observational data, where we validate our results on a randomized experiment. We demonstrate that hidden confounding can hinder existing policy learning approaches and lead to unwarranted harm, while our robust approach guarantees safety and focuses on well-evidenced improvement, a necessity for making personalized treatment policies learned from observational data reliable in practice.

Citations (149)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.