Papers
Topics
Authors
Recent
2000 character limit reached

Peer review and citation data in predicting university rankings, a large-scale analysis (1805.08529v1)

Published 22 May 2018 in cs.DL

Abstract: Most Performance-based Research Funding Systems (PRFS) draw on peer review and bibliometric indicators, two different methodologies which are sometimes combined. A common argument against the use of indicators in such research evaluation exercises is their low correlation at the article level with peer review judgments. In this study, we analyse 191,000 papers from 154 higher education institutes which were peer reviewed in a national research evaluation exercise. We combine these data with 6.95 million citations to the original papers. We show that when citation-based indicators are applied at the institutional or departmental level, rather than at the level of individual papers, surprisingly large correlations with peer review judgments can be observed, up to r <= 0.802, n = 37, p < 0.001 for some disciplines. In our evaluation of ranking prediction performance based on citation data, we show we can reduce the mean rank prediction error by 25% compared to previous work. This suggests that citation-based indicators are sufficiently aligned with peer review results at the institutional level to be used to lessen the overall burden of peer review on national evaluation exercises leading to considerable cost savings.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.