Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Blind Predicting Similar Quality Map for Image Quality Assessment (1805.08493v2)

Published 22 May 2018 in cs.CV

Abstract: A key problem in blind image quality assessment (BIQA) is how to effectively model the properties of human visual system in a data-driven manner. In this paper, we propose a simple and efficient BIQA model based on a novel framework which consists of a fully convolutional neural network (FCNN) and a pooling network to solve this problem. In principle, FCNN is capable of predicting a pixel-by-pixel similar quality map only from a distorted image by using the intermediate similarity maps derived from conventional full-reference image quality assessment methods. The predicted pixel-by-pixel quality maps have good consistency with the distortion correlations between the reference and distorted images. Finally, a deep pooling network regresses the quality map into a score. Experiments have demonstrated that our predictions outperform many state-of-the-art BIQA methods.

Citations (98)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.