Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Pose-Based Two-Stream Relational Networks for Action Recognition in Videos (1805.08484v1)

Published 22 May 2018 in cs.CV

Abstract: Recently, pose-based action recognition has gained more and more attention due to the better performance compared with traditional appearance-based methods. However, there still exist two problems to be further solved. First, existing pose-based methods generally recognize human actions with captured 3D human poses which are very difficult to obtain in real scenarios. Second, few pose-based methods model the action-related objects in recognizing human-object interaction actions in which objects play an important role. To solve the problems above, we propose a pose-based two-stream relational network (PSRN) for action recognition. In PSRN, one stream models the temporal dynamics of the targeted 2D human pose sequences which are directly extracted from raw videos, and the other stream models the action-related objects from a randomly sampled video frame. Most importantly, instead of fusing two-streams in the class score layer as before, we propose a pose-object relational network to model the relationship between human poses and action-related objects. We evaluate the proposed PSRN on two challenging benchmarks, i.e., Sub-JHMDB and PennAction. Experimental results show that our PSRN obtains the state-the-of-art performance on Sub-JHMDB (80.2%) and PennAction (98.1%). Our work opens a new door to action recognition by combining 2D human pose extracted from raw video and image appearance.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube