Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rank Minimization on Tensor Ring: A New Paradigm in Scalable Tensor Decomposition and Completion (1805.08468v1)

Published 22 May 2018 in cs.NA and cs.LG

Abstract: In low-rank tensor completion tasks, due to the underlying multiple large-scale singular value decomposition (SVD) operations and rank selection problem of the traditional methods, they suffer from high computational cost and high sensitivity of model complexity. In this paper, taking advantages of high compressibility of the recently proposed tensor ring (TR) decomposition, we propose a new model for tensor completion problem. This is achieved through introducing convex surrogates of tensor low-rank assumption on latent tensor ring factors, which makes it possible for the Schatten norm regularization based models to be solved at much smaller scale. We propose two algorithms which apply different structured Schatten norms on tensor ring factors respectively. By the alternating direction method of multipliers (ADMM) scheme, the tensor ring factors and the predicted tensor can be optimized simultaneously. The experiments on synthetic data and real-world data show the high performance and efficiency of the proposed approach.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.