Papers
Topics
Authors
Recent
2000 character limit reached

QBF as an Alternative to Courcelle's Theorem (1805.08456v1)

Published 22 May 2018 in cs.AI and cs.DS

Abstract: We propose reductions to quantified Boolean formulas (QBF) as a new approach to showing fixed-parameter linear algorithms for problems parameterized by treewidth. We demonstrate the feasibility of this approach by giving new algorithms for several well-known problems from artificial intelligence that are in general complete for the second level of the polynomial hierarchy. By reduction from QBF we show that all resulting algorithms are essentially optimal in their dependence on the treewidth. Most of the problems that we consider were already known to be fixed-parameter linear by using Courcelle's Theorem or dynamic programming, but we argue that our approach has clear advantages over these techniques: on the one hand, in contrast to Courcelle's Theorem, we get concrete and tight guarantees for the runtime dependence on the treewidth. On the other hand, we avoid tedious dynamic programming and, after showing some normalization results for CNF-formulas, our upper bounds often boil down to a few lines.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.