Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Joint Detection and Localization of an Unknown Number of Sources Using Algebraic Structure of the Noise Subspace (1805.08421v1)

Published 22 May 2018 in cs.IT, math.AG, and math.IT

Abstract: Source localization and spectral estimation are among the most fundamental problems in statistical and array signal processing. Methods which rely on the orthogonality of the signal and noise subspaces, such as Pisarenko's method, MUSIC, and root-MUSIC are some of the most widely used algorithms to solve these problems. As a common feature, these methods require both apriori knowledge of the number of sources, and an estimate of the noise subspace. Both requirements are complicating factors to the practical implementation of the algorithms, and when not satisfied exactly, can potentially lead to severe errors. In this paper, we propose a new localization criterion based on the algebraic structure of the noise subspace that is described for the first time to the best of our knowledge. Using this criterion and the relationship between the source localization problem and the problem of computing the greatest common divisor (GCD), or more practically approximate GCD, for polynomials, we propose two algorithms which adaptively learn the number of sources and estimate their locations. Simulation results show a significant improvement over root-MUSIC in challenging scenarios such as closely located sources, both in terms of detection of the number of sources and their localization over a broad and practical range of SNRs. Further, no performance sacrifice in simple scenarios is observed.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.