Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nearest neighbor density functional estimation from inverse Laplace transform (1805.08342v4)

Published 22 May 2018 in math.ST, cs.IT, math.IT, stat.ME, stat.ML, and stat.TH

Abstract: A new approach to $L_2$-consistent estimation of a general density functional using $k$-nearest neighbor distances is proposed, where the functional under consideration is in the form of the expectation of some function $f$ of the densities at each point. The estimator is designed to be asymptotically unbiased, using the convergence of the normalized volume of a $k$-nearest neighbor ball to a Gamma distribution in the large-sample limit, and naturally involves the inverse Laplace transform of a scaled version of the function $f.$ Some instantiations of the proposed estimator recover existing $k$-nearest neighbor based estimators of Shannon and R\'enyi entropies and Kullback--Leibler and R\'enyi divergences, and discover new consistent estimators for many other functionals such as logarithmic entropies and divergences. The $L_2$-consistency of the proposed estimator is established for a broad class of densities for general functionals, and the convergence rate in mean squared error is established as a function of the sample size for smooth, bounded densities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.