Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Learning What Information to Give in Partially Observed Domains (1805.08263v4)

Published 21 May 2018 in cs.AI and cs.RO

Abstract: In many robotic applications, an autonomous agent must act within and explore a partially observed environment that is unobserved by its human teammate. We consider such a setting in which the agent can, while acting, transmit declarative information to the human that helps them understand aspects of this unseen environment. In this work, we address the algorithmic question of how the agent should plan out what actions to take and what information to transmit. Naturally, one would expect the human to have preferences, which we model information-theoretically by scoring transmitted information based on the change it induces in weighted entropy of the human's belief state. We formulate this setting as a belief MDP and give a tractable algorithm for solving it approximately. Then, we give an algorithm that allows the agent to learn the human's preferences online, through exploration. We validate our approach experimentally in simulated discrete and continuous partially observed search-and-recover domains. Visit http://tinyurl.com/chitnis-corl-18 for a supplementary video.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube