Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Classifier-agnostic saliency map extraction (1805.08249v3)

Published 21 May 2018 in cs.LG, cs.AI, cs.CV, cs.NE, and stat.ML

Abstract: Currently available methods for extracting saliency maps identify parts of the input which are the most important to a specific fixed classifier. We show that this strong dependence on a given classifier hinders their performance. To address this problem, we propose classifier-agnostic saliency map extraction, which finds all parts of the image that any classifier could use, not just one given in advance. We observe that the proposed approach extracts higher quality saliency maps than prior work while being conceptually simple and easy to implement. The method sets the new state of the art result for localization task on the ImageNet data, outperforming all existing weakly-supervised localization techniques, despite not using the ground truth labels at the inference time. The code reproducing the results is available at https://github.com/kondiz/casme . The final version of this manuscript is published in Computer Vision and Image Understanding and is available online at https://doi.org/10.1016/j.cviu.2020.102969 .

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.