A Nonconvex Projection Method for Robust PCA (1805.07962v2)
Abstract: Robust principal component analysis (RPCA) is a well-studied problem with the goal of decomposing a matrix into the sum of low-rank and sparse components. In this paper, we propose a nonconvex feasibility reformulation of RPCA problem and apply an alternating projection method to solve it. To the best of our knowledge, we are the first to propose a method that solves RPCA problem without considering any objective function, convex relaxation, or surrogate convex constraints. We demonstrate through extensive numerical experiments on a variety of applications, including shadow removal, background estimation, face detection, and galaxy evolution, that our approach matches and often significantly outperforms current state-of-the-art in various ways.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.