Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Projection-Free Algorithms in Statistical Estimation (1805.07844v1)

Published 20 May 2018 in stat.ML and cs.LG

Abstract: Frank-Wolfe algorithm (FW) and its variants have gained a surge of interests in machine learning community due to its projection-free property. Recently people have reduced the gradient evaluation complexity of FW algorithm to $\log(\frac{1}{\epsilon})$ for the smooth and strongly convex objective. This complexity result is especially significant in learning problem, as the overwhelming data size makes a single evluation of gradient computational expensive. However, in high-dimensional statistical estimation problems, the objective is typically not strongly convex, and sometimes even non-convex. In this paper, we extend the state-of-the-art FW type algorithms for the large-scale, high-dimensional estimation problem. We show that as long as the objective satisfies {\em restricted strong convexity}, and we are not optimizing over statistical limit of the model, the $\log(\frac{1}{\epsilon})$ gradient evaluation complexity could still be attained.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.