Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation (1805.07654v2)

Published 19 May 2018 in stat.ML and cs.LG

Abstract: We propose a new Bayesian Neural Net formulation that affords variational inference for which the evidence lower bound is analytically tractable subject to a tight approximation. We achieve this tractability by (i) decomposing ReLU nonlinearities into the product of an identity and a Heaviside step function, (ii) introducing a separate path that decomposes the neural net expectation from its variance. We demonstrate formally that introducing separate latent binary variables to the activations allows representing the neural network likelihood as a chain of linear operations. Performing variational inference on this construction enables a sampling-free computation of the evidence lower bound which is a more effective approximation than the widely applied Monte Carlo sampling and CLT related techniques. We evaluate the model on a range of regression and classification tasks against BNN inference alternatives, showing competitive or improved performance over the current state-of-the-art.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.