Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On Attention Models for Human Activity Recognition (1805.07648v1)

Published 19 May 2018 in cs.CV, cs.AI, and cs.LG

Abstract: Most approaches that model time-series data in human activity recognition based on body-worn sensing (HAR) use a fixed size temporal context to represent different activities. This might, however, not be apt for sets of activities with individ- ually varying durations. We introduce attention models into HAR research as a data driven approach for exploring relevant temporal context. Attention models learn a set of weights over input data, which we leverage to weight the temporal context being considered to model each sensor reading. We construct attention models for HAR by adding attention layers to a state- of-the-art deep learning HAR model (DeepConvLSTM) and evaluate our approach on benchmark datasets achieving sig- nificant increase in performance. Finally, we visualize the learned weights to better understand what constitutes relevant temporal context.

Citations (133)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.