Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On Attention Models for Human Activity Recognition (1805.07648v1)

Published 19 May 2018 in cs.CV, cs.AI, and cs.LG

Abstract: Most approaches that model time-series data in human activity recognition based on body-worn sensing (HAR) use a fixed size temporal context to represent different activities. This might, however, not be apt for sets of activities with individ- ually varying durations. We introduce attention models into HAR research as a data driven approach for exploring relevant temporal context. Attention models learn a set of weights over input data, which we leverage to weight the temporal context being considered to model each sensor reading. We construct attention models for HAR by adding attention layers to a state- of-the-art deep learning HAR model (DeepConvLSTM) and evaluate our approach on benchmark datasets achieving sig- nificant increase in performance. Finally, we visualize the learned weights to better understand what constitutes relevant temporal context.

Citations (133)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.