Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Revealing the Basis: Ordinal Embedding Through Geometry (1805.07589v1)

Published 19 May 2018 in cs.CG

Abstract: Ordinal Embedding places n objects into Rd based on comparisons such as "a is closer to b than c." Current optimization-based approaches suffer from scalability problems and an abundance of low quality local optima. We instead consider a computational geometric approach based on selecting comparisons to discover points close to nearly-orthogonal "axes" and embed the whole set by their projections along each axis. We thus also estimate the dimensionality of the data. Our embeddings are of lower quality than the global optima of optimization-based approaches, but are more scalable computationally and more reliable than local optima often found via optimization. Our method uses \Theta(n d \log n) comparisons and \Theta(n2 d2) total operations, and can also be viewed as selecting constraints for an optimizer which, if successful, will produce an almost-perfect embedding for sufficiently dense datasets.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.