Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Projection-Free Bandit Convex Optimization (1805.07474v2)

Published 18 May 2018 in stat.ML, cs.DS, cs.LG, and math.OC

Abstract: In this paper, we propose the first computationally efficient projection-free algorithm for bandit convex optimization (BCO). We show that our algorithm achieves a sublinear regret of $O(nT{4/5})$ (where $T$ is the horizon and $n$ is the dimension) for any bounded convex functions with uniformly bounded gradients. We also evaluate the performance of our algorithm against baselines on both synthetic and real data sets for quadratic programming, portfolio selection and matrix completion problems.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.