Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Computation in Node-Capacitated Networks (1805.07294v2)

Published 18 May 2018 in cs.DC

Abstract: In this paper, we study distributed graph algorithms in networks in which the nodes have a limited communication capacity. Many distributed systems are built on top of an underlying networking infrastructure, for example by using a virtual communication topology known as an overlay network. Although this underlying network might allow each node to directly communicate with a large number of other nodes, the amount of communication that a node can perform in a fixed amount of time is typically much more limited. We introduce the Node-Capacitated Clique model as an abstract communication model, which allows us to study the effect of nodes having limited communication capacity on the complexity of distributed graph computations. In this model, the $n$ nodes of a network are connected as a clique and communicate in synchronous rounds. In each round, every node can exchange messages of $O(\log n)$ bits with at most $O(\log n)$ other nodes. When solving a graph problem, the input graph $G$ is defined on the same set of $n$ nodes, where each node knows which other nodes are its neighbors in $G$. To initiate research on the Node-Capacitated Clique model, we present distributed algorithms for the Minimum Spanning Tree (MST), BFS Tree, Maximal Independent Set, Maximal Matching, and Vertex Coloring problems. We show that even with only $O(\log n)$ concurrent interactions per node, the MST problem can still be solved in polylogarithmic time. In all other cases, the runtime of our algorithms depends linearly on the arboricity of $G$, which is a constant for many important graph families such as planar graphs.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.