Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Memoryless Exact Solutions for Deterministic MDPs with Sparse Rewards (1805.07220v1)

Published 17 May 2018 in cs.LG and stat.ML

Abstract: We propose an algorithm for deterministic continuous Markov Decision Processes with sparse rewards that computes the optimal policy exactly with no dependency on the size of the state space. The algorithm has time complexity of $O( |R|3 \times |A|2 )$ and memory complexity of $O( |R| \times |A| )$, where $|R|$ is the number of reward sources and $|A|$ is the number of actions. Furthermore, we describe a companion algorithm that can follow the optimal policy from any initial state without computing the entire value function, instead computing on-demand the value of states as they are needed. The algorithm to solve the MDP does not depend on the size of the state space for either time or memory complexity, and the ability to follow the optimal policy is linear in time and space with the path length of following the optimal policy from the initial state. We demonstrate the algorithm operation side by side with value iteration on tractable MDPs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.