Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Style Obfuscation by Invariance (1805.07143v1)

Published 18 May 2018 in cs.CL

Abstract: The task of obfuscating writing style using sequence models has previously been investigated under the framework of obfuscation-by-transfer, where the input text is explicitly rewritten in another style. These approaches also often lead to major alterations to the semantic content of the input. In this work, we propose obfuscation-by-invariance, and investigate to what extent models trained to be explicitly style-invariant preserve semantics. We evaluate our architectures on parallel and non-parallel corpora, and compare automatic and human evaluations on the obfuscated sentences. Our experiments show that style classifier performance can be reduced to chance level, whilst the automatic evaluation of the output is seemingly equal to models applying style-transfer. However, based on human evaluation we demonstrate a trade-off between the level of obfuscation and the observed quality of the output in terms of meaning preservation and grammaticality.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.