Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth (1805.07135v1)

Published 18 May 2018 in cs.DS

Abstract: We show that the eccentricities, diameter, radius, and Wiener index of an undirected $n$-vertex graph with nonnegative edge lengths can be computed in time $O(n\cdot \binom{k+\lceil\log n\rceil}{k} \cdot 2k k2 \log n)$, where $k$ is the treewidth of the graph. For every $\epsilon>0$, this bound is $n{1+\epsilon}\exp O(k)$, which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form $\logd n$ to $\binom{d+\lceil\log n\rceil}{d}$, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.