Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Linear-Time Constituency Parsing with RNNs and Dynamic Programming (1805.06995v2)

Published 17 May 2018 in cs.CL

Abstract: Recently, span-based constituency parsing has achieved competitive accuracies with extremely simple models by using bidirectional RNNs to model "spans". However, the minimal span parser of Stern et al (2017a) which holds the current state of the art accuracy is a chart parser running in cubic time, $O(n3)$, which is too slow for longer sentences and for applications beyond sentence boundaries such as end-to-end discourse parsing and joint sentence boundary detection and parsing. We propose a linear-time constituency parser with RNNs and dynamic programming using graph-structured stack and beam search, which runs in time $O(n b2)$ where $b$ is the beam size. We further speed this up to $O(n b\log b)$ by integrating cube pruning. Compared with chart parsing baselines, this linear-time parser is substantially faster for long sentences on the Penn Treebank and orders of magnitude faster for discourse parsing, and achieves the highest F1 accuracy on the Penn Treebank among single model end-to-end systems.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)