Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Coding for Interactive Communication with Small Memory and Applications to Robust Circuits (1805.06872v2)

Published 17 May 2018 in cs.DS

Abstract: Classically, coding theory has been concerned with the problem of transmitting a single message in a format which is robust to noise. Recently, researchers have turned their attention to designing coding schemes to make two-way conversations robust to noise. That is, given an interactive communication protocol $\Pi$, an \emph{interactive coding scheme} converts $\Pi$ into another communication protocol $\Pi'$ such that, even if errors are introduced during the execution of $\Pi'$, the parties are able to determine what the outcome of running $\Pi$ would be in a noise-free setting. We consider the problem of designing interactive coding schemes which allow the parties to simulate the original protocol using little memory. Specifically, given any communication protocol $\Pi$ we construct robust simulating protocols which tolerate a constant noise rate and require the parties to use only $O(\log d \log s)$ memory, where $d$ is the depth of $\Pi$ and $s$ is a measure of the size of $\Pi$. Prior to this work, all known coding schemes required the parties to use at least $\Omega(d)$ memory, as the parties were required to remember the transcript of the conversation thus far. Moreover, our coding scheme achieves a communication rate of $1-O(\sqrt{\varepsilon})$ over oblivious channels and $1-O(\sqrt{\varepsilon\log\log\tfrac{1}{\varepsilon}})$ over adaptive adversarial channels, matching the conjecturally optimal rates. Lastly, we point to connections between fault-tolerant circuits and coding for interactive communication with small memory.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.