Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Subspace Estimation from Incomplete Observations: A High-Dimensional Analysis (1805.06834v3)

Published 17 May 2018 in cs.LG, cond-mat.dis-nn, cs.IT, math.IT, and stat.ML

Abstract: We present a high-dimensional analysis of three popular algorithms, namely, Oja's method, GROUSE and PETRELS, for subspace estimation from streaming and highly incomplete observations. We show that, with proper time scaling, the time-varying principal angles between the true subspace and its estimates given by the algorithms converge weakly to deterministic processes when the ambient dimension $n$ tends to infinity. Moreover, the limiting processes can be exactly characterized as the unique solutions of certain ordinary differential equations (ODEs). A finite sample bound is also given, showing that the rate of convergence towards such limits is $\mathcal{O}(1/\sqrt{n})$. In addition to providing asymptotically exact predictions of the dynamic performance of the algorithms, our high-dimensional analysis yields several insights, including an asymptotic equivalence between Oja's method and GROUSE, and a precise scaling relationship linking the amount of missing data to the signal-to-noise ratio. By analyzing the solutions of the limiting ODEs, we also establish phase transition phenomena associated with the steady-state performance of these techniques.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.