Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Composite Semantic Relation Classification (1805.06521v1)

Published 16 May 2018 in cs.CL

Abstract: Different semantic interpretation tasks such as text entailment and question answering require the classification of semantic relations between terms or entities within text. However, in most cases it is not possible to assign a direct semantic relation between entities/terms. This paper proposes an approach for composite semantic relation classification, extending the traditional semantic relation classification task. Different from existing approaches, which use machine learning models built over lexical and distributional word vector features, the proposed model uses the combination of a large commonsense knowledge base of binary relations, a distributional navigational algorithm and sequence classification to provide a solution for the composite semantic relation classification problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.