Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Computing Average Common Substring Over Run Length Encoded Sequences (1805.06177v1)

Published 16 May 2018 in cs.DS

Abstract: The Average Common Substring (ACS) is a popular alignment-free distance measure for phylogeny reconstruction. The ACS can be computed in O(n) space and time, where n=x+y is the input size. The compressed string matching is the study of string matching problems with the following twist: the input data is in a compressed format and the underling task must be performed with little or no decompression. In this paper, we revisit the ACS problem under this paradigm where the input sequences are given in their run-length encoded format. We present an algorithm to compute ACS(X,Y) in O(Nlog N) time using O(N) space, where N is the total length of sequences after run-length encoding.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.