Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Crowd Counting by Adaptively Fusing Predictions from an Image Pyramid (1805.06115v2)

Published 16 May 2018 in cs.CV

Abstract: Because of the powerful learning capability of deep neural networks, counting performance via density map estimation has improved significantly during the past several years. However, it is still very challenging due to severe occlusion, large scale variations, and perspective distortion. Scale variations (from image to image) coupled with perspective distortion (within one image) result in huge scale changes of the object size. Earlier methods based on convolutional neural networks (CNN) typically did not handle this scale variation explicitly, until Hydra-CNN and MCNN. MCNN uses three columns, each with different filter sizes, to extract features at different scales. In this paper, in contrast to using filters of different sizes, we utilize an image pyramid to deal with scale variations. It is more effective and efficient to resize the input fed into the network, as compared to using larger filter sizes. Secondly, we adaptively fuse the predictions from different scales (using adaptively changing per-pixel weights), which makes our method adapt to scale changes within an image. The adaptive fusing is achieved by generating an across-scale attention map, which softly selects a suitable scale for each pixel, followed by a 1x1 convolution. Extensive experiments on three popular datasets show very compelling results.

Citations (104)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)