Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Modeling Diverse Relevance Patterns in Ad-hoc Retrieval (1805.05737v1)

Published 15 May 2018 in cs.IR

Abstract: Assessing relevance between a query and a document is challenging in ad-hoc retrieval due to its diverse patterns, i.e., a document could be relevant to a query as a whole or partially as long as it provides sufficient information for users' need. Such diverse relevance patterns require an ideal retrieval model to be able to assess relevance in the right granularity adaptively. Unfortunately, most existing retrieval models compute relevance at a single granularity, either document-wide or passage-level, or use fixed combination strategy, restricting their ability in capturing diverse relevance patterns. In this work, we propose a data-driven method to allow relevance signals at different granularities to compete with each other for final relevance assessment. Specifically, we propose a HIerarchical Neural maTching model (HiNT) which consists of two stacked components, namely local matching layer and global decision layer. The local matching layer focuses on producing a set of local relevance signals by modeling the semantic matching between a query and each passage of a document. The global decision layer accumulates local signals into different granularities and allows them to compete with each other to decide the final relevance score. Experimental results demonstrate that our HiNT model outperforms existing state-of-the-art retrieval models significantly on benchmark ad-hoc retrieval datasets.

Citations (92)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.