Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Adaptive Median Binary Pattern for noisy texture classification and retrieval (1805.05732v1)

Published 15 May 2018 in cs.CV

Abstract: Texture is an important cue for different computer vision tasks and applications. Local Binary Pattern (LBP) is considered one of the best yet efficient texture descriptors. However, LBP has some notable limitations, mostly the sensitivity to noise. In this paper, we address these criteria by introducing a novel texture descriptor, Robust Adaptive Median Binary Pattern (RAMBP). RAMBP based on classification process of noisy pixels, adaptive analysis window, scale analysis and image regions median comparison. The proposed method handles images with high noisy textures, and increases the discriminative properties by capturing microstructure and macrostructure texture information. The proposed method has been evaluated on popular texture datasets for classification and retrieval tasks, and under different high noise conditions. Without any train or prior knowledge of noise type, RAMBP achieved the best classification compared to state-of-the-art techniques. It scored more than $90\%$ under $50\%$ impulse noise densities, more than $95\%$ under Gaussian noised textures with standard deviation $\sigma = 5$, and more than $99\%$ under Gaussian blurred textures with standard deviation $\sigma = 1.25$. The proposed method yielded competitive results and high performance as one of the best descriptors in noise-free texture classification. Furthermore, RAMBP showed also high performance for the problem of noisy texture retrieval providing high scores of recall and precision measures for textures with high levels of noise.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mohammad Alkhatib (2 papers)
  2. Adel Hafiane (13 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.