Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A class of repeated-root constacyclic codes over $\mathbb{F}_{p^m}[u]/\langle u^e\rangle$ of Type $2$ (1805.05595v2)

Published 15 May 2018 in cs.IT and math.IT

Abstract: Let $\mathbb{F}{pm}$ be a finite field of cardinality $pm$ where $p$ is an odd prime, $n$ be a positive integer satisfying ${\rm gcd}(n,p)=1$, and denote $R=\mathbb{F}{pm}[u]/\langle ue\rangle$ where $e\geq 4$ be an even integer. Let $\delta,\alpha\in \mathbb{F}{pm}{\times}$. Then the class of $(\delta+\alpha u2)$-constacyclic codes over $R$ is a significant subclass of constacyclic codes over $R$ of Type 2. For any integer $k\geq 1$, an explicit representation and a complete description for all distinct $(\delta+\alpha u2)$-constacyclic codes over $R$ of length $npk$ and their dual codes are given. Moreover, formulas for the number of codewords in each code and the number of all such codes are provided respectively. In particular, all distinct $(\delta+\alpha u2)$-contacyclic codes over $\mathbb{F}{pm}[u]/\langle u{e}\rangle$ of length $pk$ and their dual codes are presented precisely.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.