Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Fixed-Parameter Tractability of Some Matching Problems Under the Color-Spanning Model (1805.05448v1)

Published 14 May 2018 in cs.DS

Abstract: Given a set of $n$ points $P$ in the plane, each colored with one of the $t$ given colors, a color-spanning set $S\subset P$ is a subset of $t$ points with distinct colors. The minimum diameter color-spanning set (MDCS) is a color-spanning set whose diameter is minimum (among all color-spanning sets of $P$). Somehow symmetrically, the largest closest pair color-spanning set (LCPCS) is a color-spanning set whose closest pair is the largest (among all color-spanning sets of $P$). Both MDCS and LCPCS have been shown to be NP-complete, but whether they are fixed-parameter tractable (FPT) when $t$ is a parameter is still open. Motivated by this question, we consider the FPT tractability of some matching problems under this color-spanning model, where $t=2k$ is the parameter. The problems are summarized as follows: (1) MinSum Matching Color-Spanning Set, namely, computing a matching of $2k$ points with distinct colors such that their total edge length is minimized; (2) MaxMin Matching Color-Spanning Set, namely, computing a matching of $2k$ points with distinct colors such that the minimum edge length is maximized; (3) MinMax Matching Color-Spanning Set, namely, computing a matching of $2k$ points with distinct colors such that the maximum edge length is minimized; and (4) $k$-Multicolored Independent Matching, namely, computing a matching of $2k$ vertices in a graph such that the vertices of the edges in the matching do not share common edges in the graph. We show that the first three problems are polynomially solvable (hence in FPT), while problem (4) is W[1]-hard.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.