Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Forbidden formations in 0-1 matrices (1805.05328v1)

Published 13 May 2018 in math.CO and cs.DM

Abstract: Keszegh (2009) proved that the extremal function $ex(n, P)$ of any forbidden light $2$-dimensional 0-1 matrix $P$ is at most quasilinear in $n$, using a reduction to generalized Davenport-Schinzel sequences. We extend this result to multidimensional matrices by proving that any light $d$-dimensional 0-1 matrix $P$ has extremal function $ex(n, P,d) = O(n{d-1}2{\alpha(n){t}})$ for some constant $t$ that depends on $P$. To prove this result, we introduce a new family of patterns called $(P, s)$-formations, which are a generalization of $(r, s)$-formations, and we prove upper bounds on their extremal functions. In many cases, including permutation matrices $P$ with at least two ones, we are able to show that our $(P, s)$-formation upper bounds are tight.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)