Forbidden formations in 0-1 matrices (1805.05328v1)
Abstract: Keszegh (2009) proved that the extremal function $ex(n, P)$ of any forbidden light $2$-dimensional 0-1 matrix $P$ is at most quasilinear in $n$, using a reduction to generalized Davenport-Schinzel sequences. We extend this result to multidimensional matrices by proving that any light $d$-dimensional 0-1 matrix $P$ has extremal function $ex(n, P,d) = O(n{d-1}2{\alpha(n){t}})$ for some constant $t$ that depends on $P$. To prove this result, we introduce a new family of patterns called $(P, s)$-formations, which are a generalization of $(r, s)$-formations, and we prove upper bounds on their extremal functions. In many cases, including permutation matrices $P$ with at least two ones, we are able to show that our $(P, s)$-formation upper bounds are tight.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.