Papers
Topics
Authors
Recent
2000 character limit reached

AMR Parsing as Graph Prediction with Latent Alignment (1805.05286v1)

Published 14 May 2018 in cs.CL

Abstract: Abstract meaning representations (AMRs) are broad-coverage sentence-level semantic representations. AMRs represent sentences as rooted labeled directed acyclic graphs. AMR parsing is challenging partly due to the lack of annotated alignments between nodes in the graphs and words in the corresponding sentences. We introduce a neural parser which treats alignments as latent variables within a joint probabilistic model of concepts, relations and alignments. As exact inference requires marginalizing over alignments and is infeasible, we use the variational auto-encoding framework and a continuous relaxation of the discrete alignments. We show that joint modeling is preferable to using a pipeline of align and parse. The parser achieves the best reported results on the standard benchmark (74.4% on LDC2016E25).

Citations (126)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.