Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Randomized Smoothing SVRG for Large-scale Nonsmooth Convex Optimization (1805.05189v1)

Published 11 May 2018 in stat.ML, cs.LG, and math.OC

Abstract: In this paper, we consider the problem of minimizing the average of a large number of nonsmooth and convex functions. Such problems often arise in typical machine learning problems as empirical risk minimization, but are computationally very challenging. We develop and analyze a new algorithm that achieves robust linear convergence rate, and both its time complexity and gradient complexity are superior than state-of-art nonsmooth algorithms and subgradient-based schemes. Besides, our algorithm works without any extra error bound conditions on the objective function as well as the common strongly-convex condition. We show that our algorithm has wide applications in optimization and machine learning problems, and demonstrate experimentally that it performs well on a large-scale ranking problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.