KL-UCB-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints (1805.05071v3)
Abstract: We consider $K$-armed stochastic bandits and consider cumulative regret bounds up to time $T$. We are interested in strategies achieving simultaneously a distribution-free regret bound of optimal order $\sqrt{KT}$ and a distribution-dependent regret that is asymptotically optimal, that is, matching the $\kappa\ln T$ lower bound by Lai and Robbins (1985) and Burnetas and Katehakis (1996), where $\kappa$ is the optimal problem-dependent constant. This constant $\kappa$ depends on the model $\mathcal{D}$ considered (the family of possible distributions over the arms). M\'enard and Garivier (2017) provided strategies achieving such a bi-optimality in the parametric case of models given by one-dimensional exponential families, while Lattimore (2016, 2018) did so for the family of (sub)Gaussian distributions with variance less than $1$. We extend this result to the non-parametric case of all distributions over $[0,1]$. We do so by combining the MOSS strategy by Audibert and Bubeck (2009), which enjoys a distribution-free regret bound of optimal order $\sqrt{KT}$, and the KL-UCB strategy by Capp\'e et al. (2013), for which we provide in passing the first analysis of an optimal distribution-dependent $\kappa\ln T$ regret bound in the model of all distributions over $[0,1]$. We were able to obtain this non-parametric bi-optimality result while working hard to streamline the proofs (of previously known regret bounds and thus of the new analyses carried out); a second merit of the present contribution is therefore to provide a review of proofs of classical regret bounds for index-based strategies for $K$-armed stochastic bandits.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.