Papers
Topics
Authors
Recent
2000 character limit reached

Algorithms and Complexity of Range Clustering (1805.04984v1)

Published 14 May 2018 in cs.DS

Abstract: We introduce a novel criterion in clustering that seeks clusters with limited range of values associated with each cluster's elements. In clustering or classification the objective is to partition a set of objects into subsets, called clusters or classes, consisting of similar objects so that different clusters are as dissimilar as possible. We propose a number of objective functions that employ the range of the clusters as part of the objective function. Several of the proposed objectives mimic objectives based on sums of similarities. These objective functions are motivated by image segmentation problems, where the diameter, or range of values associated with objects in each cluster, should be small. It is demonstrated that range-based problems are in general easier, in terms of their complexity, than the analogous similarity-sum problems. Several of the problems we present could therefore be viable alternatives to existing clustering problems which are NP-hard, offering the advantage of efficient algorithms.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.