Papers
Topics
Authors
Recent
2000 character limit reached

The Global Optimization Geometry of Shallow Linear Neural Networks (1805.04938v2)

Published 13 May 2018 in cs.LG and stat.ML

Abstract: We examine the squared error loss landscape of shallow linear neural networks. We show---with significantly milder assumptions than previous works---that the corresponding optimization problems have benign geometric properties: there are no spurious local minima and the Hessian at every saddle point has at least one negative eigenvalue. This means that at every saddle point there is a directional negative curvature which algorithms can utilize to further decrease the objective value. These geometric properties imply that many local search algorithms (such as the gradient descent which is widely utilized for training neural networks) can provably solve the training problem with global convergence.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.