Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GAN Q-learning (1805.04874v3)

Published 13 May 2018 in stat.ML and cs.LG

Abstract: Distributional reinforcement learning (distributional RL) has seen empirical success in complex Markov Decision Processes (MDPs) in the setting of nonlinear function approximation. However, there are many different ways in which one can leverage the distributional approach to reinforcement learning. In this paper, we propose GAN Q-learning, a novel distributional RL method based on generative adversarial networks (GANs) and analyze its performance in simple tabular environments, as well as OpenAI Gym. We empirically show that our algorithm leverages the flexibility and blackbox approach of deep learning models while providing a viable alternative to traditional methods.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube