Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Zero-Shot Dialog Generation with Cross-Domain Latent Actions (1805.04803v1)

Published 13 May 2018 in cs.CL and cs.AI

Abstract: This paper introduces zero-shot dialog generation (ZSDG), as a step towards neural dialog systems that can instantly generalize to new situations with minimal data. ZSDG enables an end-to-end generative dialog system to generalize to a new domain for which only a domain description is provided and no training dialogs are available. Then a novel learning framework, Action Matching, is proposed. This algorithm can learn a cross-domain embedding space that models the semantics of dialog responses which, in turn, lets a neural dialog generation model generalize to new domains. We evaluate our methods on a new synthetic dialog dataset, and an existing human-human dialog dataset. Results show that our method has superior performance in learning dialog models that rapidly adapt their behavior to new domains and suggests promising future research.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.