Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Pool-Based Sequential Active Learning for Regression (1805.04735v1)

Published 12 May 2018 in cs.LG and stat.ML

Abstract: Active learning is a machine learning approach for reducing the data labeling effort. Given a pool of unlabeled samples, it tries to select the most useful ones to label so that a model built from them can achieve the best possible performance. This paper focuses on pool-based sequential active learning for regression (ALR). We first propose three essential criteria that an ALR approach should consider in selecting the most useful unlabeled samples: informativeness, representativeness, and diversity, and compare four existing ALR approaches against them. We then propose a new ALR approach using passive sampling, which considers both the representativeness and the diversity in both the initialization and subsequent iterations. Remarkably, this approach can also be integrated with other existing ALR approaches in the literature to further improve the performance. Extensive experiments on 11 UCI, CMU StatLib, and UFL Media Core datasets from various domains verified the effectiveness of our proposed ALR approaches.

Citations (102)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.